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1. Executive summary 

Global empirical prediction systems for temperature and precipitation on (a) seasonal (KNMI) and (b) 
interannual (UREAD) timescales have been developed and tested. In both cases the prediction 
systems are based on multiple linear regression, using a consistent approach to model design across 
timescales, but incorporating different predictors for each timescale. They use observed and projected 
global forcings based on well-understood physical relationships, as well as large-scale predictors that 
have been shown to represent aspects of local scale variability, for example ENSO. The models have 
been designed to produce different ensemble members and probabilistic output for direct comparison 
against dynamical models. The performance of the empirical models have been evaluated for surface 
air temperature and precipitation over a set of historical hindcast experiments, on timescales of one to 
three months (seasonal) and a year to a decade ahead (decadal) in terms of both their deterministic 
and probabilistic skill. In addition, INPE have examined the potential of novel ócointegrationô methods 
to make seasonal forecasts in South America. 

Sources of skill and predictability have also been investigated, including teleconnections between sea 
surface temperature patterns and their propagation to local-scale variability (KNMI, IC3, UREAD), and 
their impact on skill within empirical models. Approaches to the design of an operational empirical 
prediction system have also been tested as a further step towards understanding potential 
predictability and skill within the models (UREAD).  

The empirical methods developed in this work package generally demonstrate good levels of skill 
(particularly compared to climatology for seasonal prediction and persistence for decadal prediction) 
for surface air temperature, but are typically less skillful for precipitation. There are some regions that 
show moderate correlations for precipitation, however, including south-east Asia for seasonal 
prediction, and parts of South America and Africa for interannual prediction. Full comparison of 
empirical model skill against GCMs or other benchmark models is beyond the scope of this work. 

A two-tier empirical system has also been developed in the context of decadal prediction, which 
explores the possibility of using predictions of future large-scale phenomena and their observed 
statistical relationship to local scale patterns of variability. This approach uses knowledge of future sea 
surface temperatures in the Pacific and Atlantic Oceans in a óperfect knowledgeô approach in order to 
investigate the potential skill that could be gained by the empirical model if reliable predictions of such 
large-scale patterns (from either statistical or dynamical models) were achievable. The two-tier system 
shows potential for improved real-time prediction, given the assumption that skillful predictions of 
large-scale modes of variability are available and forms a possible direction for future work and 
development of the model. 

The empirical model framework used in WP5.1 has been designed with enough flexibility to facilitate 
further developments, including the prediction of other surface variables and the ability to incorporate 
additional predictors that are shown to contribute significantly to variability at the time and space 
scales of interest. The models developed are semi-operational and forecasts have been produced for 
the coming season and decade. These have been supplied to the KNMI Climate Explorer and Decadal 
Forecast Exchange project (WP6.2) and can be updated when additional data becomes available.  

Possible future directions for continuation of this work may focus on improved regional prediction of 
temperature and precipitation, as well as on probabilities of extremes, in locations where long 
observational records exist and where strong teleconnections play a role in local scale variability.  
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2. Project objectives 

With this deliverable, the project has contributed to the achievement of the following objectives (see 
DOW Section B.1.1.2): 

No. Objective  Yes No 

1.  To achieve an objective exhaustive evaluation of current forecast 
quality from dynamical, statistical, and consolidated systems to 
identify the factors limiting s2d predictive capability 
 

X  

2.  To test specific hypotheses for the improvement of s2d predictions, 
including novel mechanisms responsible for high-impact events 
using a process-based verification approach 
 

X  

3.  To develop innovative methods for a comprehensive forecast 
quality assessment, including the maximum skill currently 
attainable 
 

X  

4.  To facilitate the integration of multidimensional observational data 
of the atmosphere-ocean-cryosphere-land system as sources of 
initial conditions, and to validate and calibrate climate predictions 
 

X  

5.  To achieve an improved forecast quality at regional scales by 
better initialising the different components, an increase in the 
spatial resolution of the global forecast systems and the 
introduction of important new process descriptions 

 X 

6.  To assess the best alternatives to characterise and deal with the 
uncertainties in climate prediction from both dynamical and 
statistical perspectives for the increase of forecast reliability 
 

X  

7.  To achieve reliable and accurate local-to-regional predictions via 
the combination and calibration of the information from different 
sources and a range of state-of-the-art regionalisation tools 
 

X  

8.  To illustrate the usefulness of the improvements for specific 
applications and develop methodologies to better communicate 
actionable climate information to policy-makers, stakeholders and 
the public through peer-reviewed publications, e-based 
dissemination tools, multi-media, examples for specific 
stakeholders (energy and agriculture), stakeholder surveys, 
conferences and targeted workshops 
 

 X 

9.  To support the European contributions to WMO research initiatives 
on s2d prediction such as the GFCS and enhance the European 
role on the provision of climate services according to WMO 
protocols by creating examples of improved tailored forecast-
based products for the GPCs and participating in their transfer to 
worldwide RCCs and NHMSs. 

 X 
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3. Detailed report on the deliverable 

 
3.1. Development of an operational empirical system for seasonal prediction (KNMI) 
 
3.1.1 Introduction  
Dynamical (process-based) forecast systems constitute the most important tool in generating 
predictions of seasonal climate.  However, the development of such systems is inherently complex 
and dynamical forecast skill is often limited by considerable errors and biases.  Empirical approaches 
offer a computationally less demanding alternative to dynamical systems and may serve either as a 
baseline for dynamical models or as a basis to improve forecasts by limiting the effects of model 
biases. 
 
In accordance with the goals of this Deliverable, a simple empirical system for predicting seasonal 
climate across the globe has been developed and validated. The system was designed for two 
purposes: (a) to serve as a benchmark for assessing and comparing the skill of dynamical forecast 
systems; and (b) to act as an independent forecast system in combination with predictions from 
dynamical systems.  Key to achieving these goals was the systemôs implementation in a quasi-
operational framework with empirical forecasts generated on a monthly basis and made publicly 
available via the KNMI Climate Explorer (http://climexp.knmi.nl/specs.cgi). 
 
The prediction system, based on multiple linear regression, produces probabilistic forecasts for 
temperature and precipitation using a number of predictors based on well-understood physical 
relationships. Doblas-Reyes et al. (2013) recently noted that the temporal evolution of seasonal 
climate should be considered as forced by the internal variability of the climate system as well as 
anthropogenic activities. Thus, in all forecasts, the global equivalent CO2 concentration (CO2EQV) is 
used as the primary predictor as an indicator of the climate change signal. Additional predictors 
describing large-scale modes of variability in the climate system, starting with the El Niño Southern 
Oscillation (ENSO), and local-scale information are subsequently selected on the basis of their 
potential to provide additional predictive power. The focus given to the climate change signal as a 
source of skill and the probabilistic nature of the forecasts produced constitute a novel approach to 
global empirical prediction. 
 
A full description of the development and validation of the prediction system is given in Eden et al. 
(2015). Here, for brevity, we provide an outline of the system (3.1.2) and a summary of the systemôs 
skill in forecasting temperature and precipitation (3.1.3). This is followed by a description of the 
systemôs quasi-operational implementation (3.1.4) and scope for further development (3.1.5). 

http://climexp.knmi.nl/specs.cgi
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3.1.2 Prediction system outline 

The multiple linear regression approach constitutes a relatively simple approach to empirical 
forecasting. The global and automated nature of the prediction system calls for the underlying 
empirical method to be parsimonious in terms of the predictive sources used to construct it. The 
statistical model and the selection of predictors were thus based on physical principles and processes 
to the fullest extent so as to elicit the maximum predictive power of, first of all, the long-term trend 
associated with the climate change signal and, secondly, as few additional predictors as is necessary 
in order to minimise the risk of overfitting.  

Predictors are taken from the previous three-month season at a lead time of one month (e.g. the 
forecast for the season March-April-May is estimated using predictors from November-December-
January. This is because the observations become available during February so that a true forecast 
can be produced.) An independent regression model is calibrated at each grid point. Whereas 
CO2EQV is included as a predictor by default, all additional predictors are included on the basis of 
their predictive potential, which is determined by a predictor selection procedure prior to model fitting.  
Predictors describing variability of both large-scale modes within the climate system and local climate 
phenomena were considered for inclusion in the set of additional predictors. The former included the 
Nino3.4 mean SSTs (as a representation of the phase of ENSO), Pacific Decadal Oscillation (PDO), 
Indian Ocean Dipole (IOD), Atlantic Multidecadal Oscillation (AMO) and the Quasi-Biennial Oscillation 
(QBO). The latter included persistence, local sea surface temperature and cumulative precipitation.  
Global observational datasets provide the predictand fields required for model fitting. Please refer to 
Eden et al. (2015) for a description of the predictors and predictands in addition to details of the data 
sources used and the predictor selection procedure. 

The residuals from the regression fit were randomly sampled (with replacement) and subsequently 
used to generate a forecast ensemble. Sampling of the residuals is performed 51 times, reflecting the 
typical ensemble size in an operational dynamic forecast. The ensemble allows for the calculation of 
probabilistic skill scores and will provide a basis for full comparison with the output of dynamical 
systems. It is anticipated that further development of the system will consider more complex methods 
of ensemble generation. 

3.1.3 Prediction system development and validation 

The model is calibrated and validated in a hindcast framework using a causal approach: hindcasts are 
produced for 1961-2013 using data since 1901 prior to the hindcast start date. The causal approach 
was chosen instead of a leave-one-out framework in order to replicate the set of observational data 
that would have been available for each hindcast were it produced in real time. Both the deterministic 
and probabilistic aspects of the prediction system must be systematically validated using a number of 
measures. Global maps of correlation between hindcast estimates and observations provide a view on 
the degree of representation of temporal variability. Verification scores originally developed in the 
context of numerical weather prediction, including the root mean squared error skill score (RMSESS) 
and the continuous rank probability skill score (CRPSS) (e.g. Ferro 2013), provide a quantification of 
the degree of bias and the skill of the probability distribution produced by the ensemble respectively. 

For temperature, significant skill was found in many regions of the globe. Key areas of high correlation 
include the majority of the tropics where the dominance of ENSO on interannual variability is greatest. 
Global patterns of RMSE skill scores are broadly similar (Figure 1; left panels); regions of strong 
correlation are generally associated with small differences from observations.  Global maps of CRPSS 
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exhibit broad patterns of skill similar to those for correlation (Figure 1; right panels). The highest skill 
scores (relative to the climatology-based forecast) are found in the tropics and are evident during all 
seasons. In Europe, skill is greatest during spring and summer, although some parts of eastern 
Europe and Scandinavia are associated with negative skill scores. Very little of North America is 
associated with high skill; indeed, the prediction system fails to outperform the climatology-based 
forecast over the majority of the eastern and southern United States. This lack of skill is known to 
extend to dynamical forecasts, particularly during winter (e.g. Kim et al. 2012). 

For precipitation, moderately strong correlation (>0.6) is limited to south-east Asia and northern parts 
of South America (between ASO and JFM). Another area of high correlation is in south-east South 
America during the Austral spring (SON to NDJ). However, the RMSE for the hindcasts is rarely an 
improvement on that derived from the climatology (Figure 2; left panels). In addition, there are only a 
few areas where the hindcast produces a positive CRPSS, which would indicate an improvement on 
the ensemble forecast derived from the climatology (Figure 2; right panels). This leads us to conclude 
that, while the deterministic component of the system is able to reproduce some components of 
seasonal precipitation variability, probabilistically the system does not perform well outside limited 
areas in its present guise. 

3.1.4 Quasi-operational implementation 

The system has been used to generate monthly forecasts for a forthcoming three-month period at a 
lead time of approximately one month.  New forecasts for both temperature and precipitation are made 
available at the earliest opportunity via the KNMI Climate Explorer (http://climexp.knmi.nl/specs.cgi).  
In practice, forecast production is only possible once all predictor data from the observational record is 
made publicly available. For instance, the forecast for October-November-December requires 
predictor data for June-July-August; observational data for August would usually be made available 
within the first 5-10 days of September.   

Presently, plots showing the ensemble mean anomaly (with respect to 1981-2000) and tercile 
summaries (indicating the most likely tercile category) are available to Climate Explorer users 
alongside updated skill plots showing correlation and verification skill scores upon which the quality of 
the forecast should be judged. All plots are available for the 12 most recent forecasts. Additionally, 
netCDF files including all ensemble hindcasts from 1961 to present are available for public download. 

3.1.5 Outlook 

The system's framework permits the potential to test empirical prediction methods other than linear 
regression, such as neural networks that potentially capture non-linear aspects of the climate system.  
The current list of predictors considered for inclusion is not exhaustive and there is scope to better 
exploit the predictive information in other locally-varying predictors. Further avenues for system 
development include region-specific and case-based analysis and application to alternative 
predictands from century-long reanalyses or those describing extreme events. Focus could also be 
given to alternative methods of ensemble generation using, for instance, derived uncertainty in 
regression parameters and spatial patterns. 
 

http://climexp.knmi.nl/specs.cgi
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Figure 1: RMSESS and CRPSS of the surface air temperature hindcasts expressed as a skill score 
against a climatology ensemble forecast.  For CRPSS, stippling is used to indicate significance at the 

95% level following a one sided t-test. 
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Figure 2: As Figure 1 but for precipitation. 
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3.2. Exploring sources of seasonal predictability at regional scales (IC3 & INPE) 

Statistical models based on simple linear regression as described in Coelho et al. (2004) are 
estimated using four different predictors: the local predictand itself and three SST indices: Niño3.4 
(SST anomalies averaged over 170ºW-120ºW; 5ºS-5ºN), SNA (SST anomalies averaged over 20ºW-
0ºW; 3ºS-3ºN) and AMO (SST anomalies averaged over 80ºW-0ºW; 0º-60ºN minus global SST 
anomalies over 60ºS-60ºN). These predictors are used to predict monthly near-surface temperature 
and precipitation in summer (MJJA) and winter (NDJF). The predictors for the month of April are used 
to predict near-surface temperature and precipitation in May, June, July & August, and the predictors 
for the month of October are used to predict these variables in November, December, January & 
February. Thus, the four lead times considered are zero to three months ahead. 

The statistical models are built in retroactive (causal) mode, that is, only years prior to the target 
period are used in the estimation of the regression coefficients as in an operational context (Mason 
and Mimmack, 2002; Mason and Baddour, 2008; Eden et al., 2015). The first training period 1951-
1981 is increased by one year at a time to predict the target years from 1982 to 2010. In this study, 
GHCNv2 (near-surface temperature) and GPCC (precipitation) datasets are used to train the statistical 
models over continental areas to take advantage of their long time series to train the statistical models 
in retroactive mode. However, the forecast quality is assessed using an independent dataset for each 
variable, that is, GPCP for precipitation and ERA-Interim for near-surface temperature. The SST 
indices used as predictors in the statistical models are computed using ERSST. 

As shown in previous studies (e.g. Barnston, 1994; Lang et al., 2014), forecast skill is more sensitive 
to the predictand, predictor, target region and season than to lead time. That is, forecast skill varies 
little from lead time zero to four (Figure 3). Another well-known result is that regardless of the 
predictor, the statistical models predict better near-surface temperature than precipitation. In fact, 
none of the four predictors used to predict precipitation leads to statistically significant correlation, 
except for small areas. As noted in previous studies, predicting precipitation outside the ENSO 
teleconnection areas using linear models is a very difficult goal (e.g. Eden et al., 2015). This is 
because linear models do not account for the non-linear interactions between the atmosphere region 
and the slowly varying components of the climate system in the extratropical region, which limits their 
usefulness. 

Much of the near-surface temperature skill in summer months might be derived from the trend 
between 1982 and 2010, something not detected in winter (EEA, 2015). We found a statistically 
significant observed warming trend in May and June over the Western Europe, the Mediterranean Sea 
and northern Africa. On the other hand, during the months of July and August the warming trend is 
detected in northern and eastern Europe, northern Africa, Eurasia, and the Middle East. These are the 
areas where the statistical models yield statistically significant correlation skill in July and August (third 
and fourth rows of Figure 3). 

INPE investigated an alternative modelling approach for empirical seasonal temperature forecasts 
over South America. Seasonal average temperatures were found to be non-stationary in most parts of 
South America over the 1949-2012 period. Simple persistence and lagged regression methods were 
found to have considerable correlation skill in forecasting next season temperature using previous 
season temperature as predictor. However, the presence of trends in both predictor and predictand 
temperature variables can affect correlation skill. Therefore, models able to account for non-
stationarity in these variables may do better in modelling and forecasting seasonal temperatures 
known to have trends. A novel method (cointegration), introduced in this investigation for empirical 
seasonal climate forecasting, was found to perform better than the traditional persistence and 
regression forecasts for places where the predictor and predictand temperatures were found to have 
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stochastic trends. Potential skill pairwise comparisons between temperature forecasts produced with 
cointegration and those produced using persistence and lagged regression showed that the alternative 
cointegration method performs significantly better than the other two.  

Figure 4 shows the difference between correlation skill of cointegration and the ordinary least square 
(OLS) regression MAM temperature forecasts using previous NDJ temperatures as predictor. The 
positive differences illustrate the regions where cointegration performs better than OLS regression and 
persistence. 

 

 

 

Figure 3: Correlation between predicted and observed near-surface temperature in May (first row), 
June (second row), July (third row) and August (fourth row). Anomaly values for April are used to 
predict the summer months of May (lead time zero) through August (lead time three months). The 
correlation was computed for the hindcast period 1982-2010. The statistical model was estimated 
using four different predictors: the predictand variable itself at the same grid point (first column), 

Niño3.4 SST (second column), SNA (third column) and AMO (fourth column). The dots are placed 
where there is statistical significance at the 95% level computed using non-parametric bootstrap. 
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( a ) ( b ) 

Figure 4: Differences between correlation skill of cointegration and the OLS regression forecasts 
using previous NDJ temperatures as predictor for MAM temperatures: Map of (a) the differences 

between correlation coefficients (cointegration ï OLS regression) and (b) the respective p-values of 
the test. For the areas in white one of the following holds: the predictor and predictand temperatures 
are not jointly unit root (additional information in Turasie and Coelho 2015) or the two temperatures 
have no cointegrating relationship or the difference between correlation skill of the two methods are 

not significantly different from zero at 5% level or missing numerical data were identified. 
 

3.3. Development of an empirical system for decadal prediction (UREAD) 

3.3.1 Empirical model design 

A new global empirical decadal prediction system has been developed and tested. The model, based 
on a multiple linear regression approach consistent with the approach taken by KNMI (see above & 
Eden et al., 2015), has been designed to produce probabilistic output for comparison against 
dynamical models. It uses observed and projected global forcings based on well-understood physical 
relationships, as well as large-scale sea surface temperature (SST) patterns, as predictors for local 
(grid-scale) annual mean surface air temperature and precipitation over the globe.  

The prediction system incorporates uncertainty information through the generation of ensembles, 
which are output in a similar format to those of dynamical models in order to aid robust comparisons. 
The selection of forcings and predictors is based on physical principles and well-understood observed 
relationships to the fullest extent, yet is as simple as possible, using as few predictors as necessary to 
minimise the risk of overfitting. The present study has focused on prediction of surface air temperature 
and precipitation using global mean radiative forcings and observed ENSO, AMO and IPO indices 
since there is a relative abundance of data with which to build and evaluate the system. 

The models performance has been evaluated over a set of historical hindcast experiments, in terms of 
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both their deterministic and probabilistic skill. 

3.3.2 Data 

For the purposes of model development and evaluation the target variable (predictand) is surface air 
temperature anomalies and precipitation. For surface air temperature the Cowtan and Way 
interpolated observational dataset (Cowtan and Way, 2014), based on HadCRUT4 and covering the 
period 1900-2014 (with anomalies relative to a 1961-1990 baseline) was chosen as it provides 
coverage over the whole globe. For precipitation the CRU-TS3.21 dataset is used since it provides full 
coverage of monthly average precipitation amounts (in mm) over land for the period 1901-2012. 

The empirical model uses several globally observed forcings and predictors regressed on the 
predictand on a gridpoint by gridpoint basis over a historical training period to obtain a set of model 
parameters. The forcings used are the anthropogenic radiative forcing (AF - with a ten year lag), solar 
irradiance and volcanic aerosols, which are prescribed in the model as global averages according to 
the CMIP5 historical scenario (up to 2005) and Representative Concentration Pathway (RCP) 4.5 for 
future projections (beyond 2005). 

An additional predictor included in the model is the ENSO, which is prescribed according to the 
observed Nino3.4 index (with a four month lag) from the HadISST dataset. The Atlantic Multidecadal 
Oscillation (AMO) and Interdecadal Pacific Oscillation (IPO) modes of variability were also 
investigated as potential sources of model skill.  

The inclusion of each of the forcings and predictors in the model was justified according to a set of 
statistical criteria, including: (i) demonstrating a significant correlation with the predicand, (ii) 
increasing the total fraction of the variance explained by the model and (iii) its inclusion leads to 
minimal increases in the uncertainties of the individual regression parameters of the model. The lag 
between each predictor and the predictand is a free parameter within the model and is selected based 
on maximising the total fraction of the variance explained by the model, while minimising any increase 
in model parameter uncertainty. 

The approach adopted assumes each climate variable responds linearly to the various components, 
which were analysed in terms of their individual contributions over the historical period using a multiple 
linear regression analysis. The óstandardô version of the model includes the AF, solar irradiance, 
volcanic aerosols and ENSO components, justified according to the criteria above. The model was 
found to have a correlation of 0.95 (and explained 90% of the variance) with global mean surface air 
temperature over the period 1900-2014, and a correlation of 0.60 (36% of variance explained) with 
observed global mean precipitation over the period 1901-2012. Versions of the model that included 
additional predictors, AMO and IPO were also investigated in terms of their importance for regional 
prediction. 

3.3.3 Hindcasts 

The predictive capabilities of the empirical model for forecast lead times of one to ten years has been 
evaluated based on a set of decadal hindcasts, starting each year, covering the period 1960-2014. 
Each hindcast contains 51 ensemble members, generated by random sampling from the residuals of 
the model fit during the training period. When considering regional predictions the residuals are 
sampled so that the ensemble members are spatially coherent, i.e. each ensemble member is 
generated by selecting a spatial map of the residuals, rather than independently selecting a residual at 
each location over the globe.  

The training period for the model and the prescription of ófutureô forcings and predictors in each 
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hindcast are defined according to a series of different prediction ómodesô. These modes were designed 
to allow investigation of sources of potential skill and predictability within the model and offer the 
opportunity to test different approaches for the design of operational decadal prediction systems that 
would be too computationally expensive to do with dynamical models.  

The prediction modes include: (i) óReal-timeô: an approach that only uses information that would have 
been available at the time, and which provides an estimate of out-of-sample skill of the model. (ii) 
óPrescribed forcingsô: an approach in which future volcanic and solar forcings are prescribed in the 
hindcasts according to their observed values. Such an approach is aimed at exploring potential 
predictability given some representation of all the known important forcings and physical processes 
(an approach taken in the CMIP5 decadal prediction experiment). (iii) óExploiting the trendô: an 
approach in which the model is fitted using future forcing information to exploit predictability from 
knowledge of the forced trend component associated with AF. This approach is designed to exploit 
maximum knowledge about each of the model components to compensate for the limited amount of 
data available to train the model during the earlier hindcasts. While exploiting the trend undoubtedly 
produces overestimates of overall skill of the model, it is useful in terms of gauging more robust 
estimates of model bias for the purposes of calibrating a forecast system that is to be used for 
operational decadal predictions.  

A two-tier system is also investigated, which explores the possibility of using predictions of future 
large-scale phenomena and their observed statistical relationship to local scale patterns of variability. 
This approach uses knowledge of future sea surface temperatures in the Pacific and Atlantic Oceans 
in a óperfect knowledgeô approach (i.e. without the need to assess the skill of any particular forecast 
system for predicting the large-scale modes themselves). Such an approach allows investigation of 
the potential skill that could be gained by the empirical model if reliable predictions of such large-scale 
patterns (from either statistical or dynamical models) were achievable.  

The skill of the model has been investigated under each of these prediction modes for both the 
standard version of the model, as well as for versions that contain the additional predictors, AMO and 
IPO. 

3.3.4 Hindcast skill 

The hindcasts, generated in each prediction mode, and from versions of the empirical model that 
include different forcings and predictors, have been evaluated in terms of both their deterministic and 
probabilistic skill both as global means and in terms of spatial patterns of skill.  

Figure 5 shows skill of the hindcasts for global mean surface air temperature anomalies in each of the 
four prediction modes for the standard version of the model. The top panels show the correlation and 
root mean squared error (RMSE) of the ensemble mean for each set of hindcasts, as well as the skill 
of persistence hindcasts for comparison. The bottom two panels in Figure 5 show the probabilistic, 
proper skill scores Ignorance and the continuous ranked probability skill score (CRPSS), which are 
shown relative to the skill of persistence.  

All hindcasts from the empirical model are shown to perform significantly better than persistence at all 
annual mean lead times and generally the skill of the model increases as extra information is added 
beyond what would have been known in real-time. Prescribing volcanic aerosol forcings is shown to 
have a small impact on the overall level of skill in the model at all lead times. However, although the 
impact of volcanic forcing is small overall its impact on skill will be much larger in the years following 
any large eruption.  

The skill of hindcasts that include an additional AMO predictor is also shown in Figure 5 (light blue 
lines). The inclusion of the AMO predictor (or the IPO predictor, which was also tested) does not lead 
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to any significant improvement in skill over the standard model (dark blue lines), which is perhaps not 
surprising for prediction of global mean temperature. However these components have been shown to 
have larger impacts on regional scale prediction (Figure 6).  

Figure 6 shows that at lead times of one year (top panels) there is clearly a benefit of including the 
AMO predictor (left panels) over the standard version of the model for surface air temperatures in the 
North Atlantic and Greenland region. Smaller improvements are also demonstrated over much of the 
globe (negative score with no stippling indicate statistically significant skill over the standard version of 
the empirical model). At longer lead times (bottom panels) much of the improvement has diminished 
and there are even a few locations (in the Southern Ocean for example) which show a degradation of 
skill compared to the standard version of the model. The IPO predictor also shows very small 
improvements in skill compared to a model that includes ENSO and AMO at lead times of one year 
(not shown), however, any improvement in skill is small relative to the extra uncertainty introduced on 
the individual model parameters. Such a result suggests that additional predictors should only be 
included within the model in regions and for variables where they are shown to significantly improve 
the model. 

The two-tier system also shows potential for improved real-time prediction, given the assumption that 
skillful predictions of large-scale modes of variability are available. Figure 6 demonstrates this 
potential in terms of improvements in model skill over the standard version of the model that includes 
no such future information of SST patterns. The two-tier version of the model, which includes either an 
ENSO component only (middle panels) or includes ENSO and AMO (right panels), demonstrates the 
potential for significant improvements in model skill, particularly over Europe, North America and parts 
of Africa.  

The level of improvement that could be gained by such an approach is clearly contingent on the 
predictability of SSTs at these timescales and the skill of any prediction system used within such a 
two-tier approach. The potential improvements in skill over the standard model approach, however, 
diminish as lead time increases, showing no improvement, or even a degradation of skill in much of 
the Southern hemisphere at lead times beyond one year (middle and bottom panels).  

For precipitation the model is generally less skillful, however, it still demonstrates statistically 
significant skill relative to persistence in some cases. For global mean precipitation (not shown), 
hindcasts generated through the real-time and prescribed forcing prediction modes show negative 
correlations (around ï0.3) with the observed precipitation time series at all lead times, while 
correlations of around 0.4 are found for hindcasts generated by exploiting the trend and the two-tier 
approach. These correlations are not statistically significant, however. RMSEs generally decrease as 
information is added in each prediction mode and increase as lead time increases. The RMSEs are 
always smaller than those of persistence, suggesting that the model offers an improvement over 
forecasting persistence. The model also demonstrates probabilistic skill relative to persistence (by up 
to 1 bit using the two-tier approach), although the real-time and prescribed forcing modes are not 
found to be statistically significant, despite the fact that the mean level of skill as a function of lead 
time is consistently greater than that of persistence. 

Figure 7 shows several skill measures for hindcasts of precipitation at a lead time of one year ahead 
for three different prediction modes. The top panels show the correlation of the model hindcasts with 
the observed precipitation time series and show that although correlation increases as information is 
added in the model (from real-time ï left, up to the two-tier approach - right), they are not statistically 
significant over land in many regions (indicated by the stippling in the figure). Statistically significant 
correlations (up to r=0.6) are found in the two-tier approach over parts of South America, Africa and 
southern Asia, however. The RMSEs also decrease as information is added into the model (from left 
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to right in the middle row of panels) and are generally higher in the Southern Hemisphere. Hindcasts 
of persistence also generally show larger RMSEs over the whole globe than for the model in all 
prediction modes (not shown). The bottom panels of Figure 7 show Ignorance of the model relative to 
hindcasts of persistence and indicate that despite the low correlations shown in the top panels, the 
model still consistently outperforms persistence over all land-based regions, and that the skill is 
statistically significant. Once again there is evidence that a two-tier approach has the potential to 
improve forecasts of precipitation if predictions of SST patterns were included in the model, 
particularly over Europe, Asia and parts of Africa. Most of the additional potential skill, however, 
comes from inclusion of the ENSO component, rather than from AMO or IPO in this case (not shown).  

3.3.5 Forecasts and future development 

The empirical model framework has been designed with enough flexibility to facilitate further 
developments, including the prediction of other surface variables and the ability to incorporate 
additional predictors within the model that are shown to contribute significantly to variability at the local 
scale. It is semi-operational in the sense that forecasts have been produced for the coming decade, 
have been supplied to the Decadal Forecast Exchange project (WP6.2) and can be updated when 
additional data becomes available. A paper detailing the development of the empirical decadal 
prediction system and its hindcasts skill has also been submitted to Climate Dynamics. 

Possible future directions for continuation of this work may focus on prediction of other surface 
variables, as well as on the probabilities of extremes, at the regional scale in locations where long 
observational records exist and where strong teleconnections are shown to play a role in local scale 
variability. In practice, however, empirical methods are dependent on the quality and quantity of the 
input data (historical observations and future forcing scenarios). 

Currently, all forcings are applied equally across the globe (i.e. as globally averaged forcing values, 
rather than spatially varying ones) and contain no uncertainty estimates. Inclusion of regionally-varying 
forcings may lead to improved prediction skill in some locations. 

Finally, the two-tier approach could further be extended to incorporate predictions of other large-scale 
mechanisms and drivers of local-scale variability in regions where strong teleconnections (and skillful 
model predictions of the mechanisms themselves) have been demonstrated. Future development of 
such an approach would focus on the ability of such large-scale predictors to enhance the skill of the 
empirical model in specific regions outside of the perfect knowledge framework by incorporating 
predictions from dynamical models.  
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Figure 5: Hindcast skill of the empirical model for global mean surface air temperature in each of the 
four prediction modes as a function of lead time. Top panels show correlation (left) and RMSE (right) 
of the ensemble mean, while the bottom two panels show Ignorance (left) and CRPS (right) relative to 

hindcasts of persistence. 

 

 

 












